Metamath Proof Explorer


Theorem elinisegg

Description: Membership in the inverse image of a singleton. (Contributed by NM, 28-Apr-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011) Put in closed form and shorten. (Revised by BJ, 16-Oct-2024)

Ref Expression
Assertion elinisegg
|- ( ( B e. V /\ C e. W ) -> ( C e. ( `' A " { B } ) <-> C A B ) )

Proof

Step Hyp Ref Expression
1 elimasng1
 |-  ( ( B e. V /\ C e. W ) -> ( C e. ( `' A " { B } ) <-> B `' A C ) )
2 brcnvg
 |-  ( ( B e. V /\ C e. W ) -> ( B `' A C <-> C A B ) )
3 1 2 bitrd
 |-  ( ( B e. V /\ C e. W ) -> ( C e. ( `' A " { B } ) <-> C A B ) )