Metamath Proof Explorer


Theorem elinsn

Description: If the intersection of two classes is a (proper) singleton, then the singleton element is a member of both classes. (Contributed by AV, 30-Dec-2021)

Ref Expression
Assertion elinsn
|- ( ( A e. V /\ ( B i^i C ) = { A } ) -> ( A e. B /\ A e. C ) )

Proof

Step Hyp Ref Expression
1 snidg
 |-  ( A e. V -> A e. { A } )
2 eleq2
 |-  ( ( B i^i C ) = { A } -> ( A e. ( B i^i C ) <-> A e. { A } ) )
3 elin
 |-  ( A e. ( B i^i C ) <-> ( A e. B /\ A e. C ) )
4 3 biimpi
 |-  ( A e. ( B i^i C ) -> ( A e. B /\ A e. C ) )
5 2 4 syl6bir
 |-  ( ( B i^i C ) = { A } -> ( A e. { A } -> ( A e. B /\ A e. C ) ) )
6 1 5 mpan9
 |-  ( ( A e. V /\ ( B i^i C ) = { A } ) -> ( A e. B /\ A e. C ) )