Description: If the intersection of two classes is a (proper) singleton, then the singleton element is a member of both classes. (Contributed by AV, 30-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elinsn | |- ( ( A e. V /\ ( B i^i C ) = { A } ) -> ( A e. B /\ A e. C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snidg | |- ( A e. V -> A e. { A } ) |
|
| 2 | eleq2 | |- ( ( B i^i C ) = { A } -> ( A e. ( B i^i C ) <-> A e. { A } ) ) |
|
| 3 | elin | |- ( A e. ( B i^i C ) <-> ( A e. B /\ A e. C ) ) |
|
| 4 | 3 | biimpi | |- ( A e. ( B i^i C ) -> ( A e. B /\ A e. C ) ) |
| 5 | 2 4 | biimtrrdi | |- ( ( B i^i C ) = { A } -> ( A e. { A } -> ( A e. B /\ A e. C ) ) ) |
| 6 | 1 5 | mpan9 | |- ( ( A e. V /\ ( B i^i C ) = { A } ) -> ( A e. B /\ A e. C ) ) |