Description: Membership in class intersection. (Contributed by NM, 21-May-1994)
Ref | Expression | ||
---|---|---|---|
Hypothesis | elint.1 | |- A e. _V |
|
Assertion | elint | |- ( A e. |^| B <-> A. x ( x e. B -> A e. x ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elint.1 | |- A e. _V |
|
2 | eleq1 | |- ( y = A -> ( y e. x <-> A e. x ) ) |
|
3 | 2 | imbi2d | |- ( y = A -> ( ( x e. B -> y e. x ) <-> ( x e. B -> A e. x ) ) ) |
4 | 3 | albidv | |- ( y = A -> ( A. x ( x e. B -> y e. x ) <-> A. x ( x e. B -> A e. x ) ) ) |
5 | df-int | |- |^| B = { y | A. x ( x e. B -> y e. x ) } |
|
6 | 4 5 | elab2g | |- ( A e. _V -> ( A e. |^| B <-> A. x ( x e. B -> A e. x ) ) ) |
7 | 1 6 | ax-mp | |- ( A e. |^| B <-> A. x ( x e. B -> A e. x ) ) |