Metamath Proof Explorer


Theorem elint2

Description: Membership in class intersection. (Contributed by NM, 14-Oct-1999)

Ref Expression
Hypothesis elint2.1
|- A e. _V
Assertion elint2
|- ( A e. |^| B <-> A. x e. B A e. x )

Proof

Step Hyp Ref Expression
1 elint2.1
 |-  A e. _V
2 1 elint
 |-  ( A e. |^| B <-> A. x ( x e. B -> A e. x ) )
3 df-ral
 |-  ( A. x e. B A e. x <-> A. x ( x e. B -> A e. x ) )
4 2 3 bitr4i
 |-  ( A e. |^| B <-> A. x e. B A e. x )