Metamath Proof Explorer


Theorem elintab

Description: Membership in the intersection of a class abstraction. (Contributed by NM, 30-Aug-1993)

Ref Expression
Hypothesis elintab.ex
|- A e. _V
Assertion elintab
|- ( A e. |^| { x | ph } <-> A. x ( ph -> A e. x ) )

Proof

Step Hyp Ref Expression
1 elintab.ex
 |-  A e. _V
2 elintabg
 |-  ( A e. _V -> ( A e. |^| { x | ph } <-> A. x ( ph -> A e. x ) ) )
3 1 2 ax-mp
 |-  ( A e. |^| { x | ph } <-> A. x ( ph -> A e. x ) )