Metamath Proof Explorer


Theorem elintdv

Description: Membership in class intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses elintdv.1
|- ( ph -> A e. V )
elintdv.2
|- ( ( ph /\ x e. B ) -> A e. x )
Assertion elintdv
|- ( ph -> A e. |^| B )

Proof

Step Hyp Ref Expression
1 elintdv.1
 |-  ( ph -> A e. V )
2 elintdv.2
 |-  ( ( ph /\ x e. B ) -> A e. x )
3 nfv
 |-  F/ x ph
4 3 1 2 elintd
 |-  ( ph -> A e. |^| B )