Metamath Proof Explorer


Theorem elintg

Description: Membership in class intersection, with the sethood requirement expressed as an antecedent. (Contributed by NM, 20-Nov-2003) (Proof shortened by JJ, 26-Jul-2021)

Ref Expression
Assertion elintg
|- ( A e. V -> ( A e. |^| B <-> A. x e. B A e. x ) )

Proof

Step Hyp Ref Expression
1 eleq1
 |-  ( y = A -> ( y e. x <-> A e. x ) )
2 1 ralbidv
 |-  ( y = A -> ( A. x e. B y e. x <-> A. x e. B A e. x ) )
3 dfint2
 |-  |^| B = { y | A. x e. B y e. x }
4 2 3 elab2g
 |-  ( A e. V -> ( A e. |^| B <-> A. x e. B A e. x ) )