Description: Membership in the intersection of a class abstraction. (Contributed by NM, 17-Feb-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | elintrabg | |- ( A e. V -> ( A e. |^| { x e. B | ph } <-> A. x e. B ( ph -> A e. x ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 | |- ( y = A -> ( y e. |^| { x e. B | ph } <-> A e. |^| { x e. B | ph } ) ) |
|
2 | eleq1 | |- ( y = A -> ( y e. x <-> A e. x ) ) |
|
3 | 2 | imbi2d | |- ( y = A -> ( ( ph -> y e. x ) <-> ( ph -> A e. x ) ) ) |
4 | 3 | ralbidv | |- ( y = A -> ( A. x e. B ( ph -> y e. x ) <-> A. x e. B ( ph -> A e. x ) ) ) |
5 | vex | |- y e. _V |
|
6 | 5 | elintrab | |- ( y e. |^| { x e. B | ph } <-> A. x e. B ( ph -> y e. x ) ) |
7 | 1 4 6 | vtoclbg | |- ( A e. V -> ( A e. |^| { x e. B | ph } <-> A. x e. B ( ph -> A e. x ) ) ) |