Description: Membership in the intersection of a class abstraction. (Contributed by NM, 17-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elintrabg | |- ( A e. V -> ( A e. |^| { x e. B | ph } <-> A. x e. B ( ph -> A e. x ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq1 |  |-  ( y = A -> ( y e. |^| { x e. B | ph } <-> A e. |^| { x e. B | ph } ) ) | |
| 2 | eleq1 | |- ( y = A -> ( y e. x <-> A e. x ) ) | |
| 3 | 2 | imbi2d | |- ( y = A -> ( ( ph -> y e. x ) <-> ( ph -> A e. x ) ) ) | 
| 4 | 3 | ralbidv | |- ( y = A -> ( A. x e. B ( ph -> y e. x ) <-> A. x e. B ( ph -> A e. x ) ) ) | 
| 5 | vex | |- y e. _V | |
| 6 | 5 | elintrab |  |-  ( y e. |^| { x e. B | ph } <-> A. x e. B ( ph -> y e. x ) ) | 
| 7 | 1 4 6 | vtoclbg |  |-  ( A e. V -> ( A e. |^| { x e. B | ph } <-> A. x e. B ( ph -> A e. x ) ) ) |