| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iooval2 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A (,) B ) = { x e. RR | ( A < x /\ x < B ) } ) |
| 2 |
1
|
eleq2d |
|- ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A (,) B ) <-> C e. { x e. RR | ( A < x /\ x < B ) } ) ) |
| 3 |
|
breq2 |
|- ( x = C -> ( A < x <-> A < C ) ) |
| 4 |
|
breq1 |
|- ( x = C -> ( x < B <-> C < B ) ) |
| 5 |
3 4
|
anbi12d |
|- ( x = C -> ( ( A < x /\ x < B ) <-> ( A < C /\ C < B ) ) ) |
| 6 |
5
|
elrab |
|- ( C e. { x e. RR | ( A < x /\ x < B ) } <-> ( C e. RR /\ ( A < C /\ C < B ) ) ) |
| 7 |
|
3anass |
|- ( ( C e. RR /\ A < C /\ C < B ) <-> ( C e. RR /\ ( A < C /\ C < B ) ) ) |
| 8 |
6 7
|
bitr4i |
|- ( C e. { x e. RR | ( A < x /\ x < B ) } <-> ( C e. RR /\ A < C /\ C < B ) ) |
| 9 |
2 8
|
bitrdi |
|- ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A (,) B ) <-> ( C e. RR /\ A < C /\ C < B ) ) ) |