Step |
Hyp |
Ref |
Expression |
1 |
|
eliooxr |
|- ( C e. ( A (,) B ) -> ( A e. RR* /\ B e. RR* ) ) |
2 |
|
elioore |
|- ( C e. ( A (,) B ) -> C e. RR ) |
3 |
1 2
|
jca |
|- ( C e. ( A (,) B ) -> ( ( A e. RR* /\ B e. RR* ) /\ C e. RR ) ) |
4 |
|
df-3an |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR ) <-> ( ( A e. RR* /\ B e. RR* ) /\ C e. RR ) ) |
5 |
3 4
|
sylibr |
|- ( C e. ( A (,) B ) -> ( A e. RR* /\ B e. RR* /\ C e. RR ) ) |
6 |
|
eliooord |
|- ( C e. ( A (,) B ) -> ( A < C /\ C < B ) ) |
7 |
5 6
|
jca |
|- ( C e. ( A (,) B ) -> ( ( A e. RR* /\ B e. RR* /\ C e. RR ) /\ ( A < C /\ C < B ) ) ) |
8 |
|
rexr |
|- ( C e. RR -> C e. RR* ) |
9 |
8
|
3anim3i |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR ) -> ( A e. RR* /\ B e. RR* /\ C e. RR* ) ) |
10 |
9
|
anim1i |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR ) /\ ( A < C /\ C < B ) ) -> ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < C /\ C < B ) ) ) |
11 |
|
elioo3g |
|- ( C e. ( A (,) B ) <-> ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < C /\ C < B ) ) ) |
12 |
10 11
|
sylibr |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR ) /\ ( A < C /\ C < B ) ) -> C e. ( A (,) B ) ) |
13 |
7 12
|
impbii |
|- ( C e. ( A (,) B ) <-> ( ( A e. RR* /\ B e. RR* /\ C e. RR ) /\ ( A < C /\ C < B ) ) ) |