Metamath Proof Explorer


Theorem elioo4g

Description: Membership in an open interval of extended reals. (Contributed by NM, 8-Jun-2007) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion elioo4g
|- ( C e. ( A (,) B ) <-> ( ( A e. RR* /\ B e. RR* /\ C e. RR ) /\ ( A < C /\ C < B ) ) )

Proof

Step Hyp Ref Expression
1 eliooxr
 |-  ( C e. ( A (,) B ) -> ( A e. RR* /\ B e. RR* ) )
2 elioore
 |-  ( C e. ( A (,) B ) -> C e. RR )
3 1 2 jca
 |-  ( C e. ( A (,) B ) -> ( ( A e. RR* /\ B e. RR* ) /\ C e. RR ) )
4 df-3an
 |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR ) <-> ( ( A e. RR* /\ B e. RR* ) /\ C e. RR ) )
5 3 4 sylibr
 |-  ( C e. ( A (,) B ) -> ( A e. RR* /\ B e. RR* /\ C e. RR ) )
6 eliooord
 |-  ( C e. ( A (,) B ) -> ( A < C /\ C < B ) )
7 5 6 jca
 |-  ( C e. ( A (,) B ) -> ( ( A e. RR* /\ B e. RR* /\ C e. RR ) /\ ( A < C /\ C < B ) ) )
8 rexr
 |-  ( C e. RR -> C e. RR* )
9 8 3anim3i
 |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR ) -> ( A e. RR* /\ B e. RR* /\ C e. RR* ) )
10 9 anim1i
 |-  ( ( ( A e. RR* /\ B e. RR* /\ C e. RR ) /\ ( A < C /\ C < B ) ) -> ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < C /\ C < B ) ) )
11 elioo3g
 |-  ( C e. ( A (,) B ) <-> ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < C /\ C < B ) ) )
12 10 11 sylibr
 |-  ( ( ( A e. RR* /\ B e. RR* /\ C e. RR ) /\ ( A < C /\ C < B ) ) -> C e. ( A (,) B ) )
13 7 12 impbii
 |-  ( C e. ( A (,) B ) <-> ( ( A e. RR* /\ B e. RR* /\ C e. RR ) /\ ( A < C /\ C < B ) ) )