Description: Membership in an open real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eliood.1 | |- ( ph -> A e. RR* ) | |
| eliood.2 | |- ( ph -> B e. RR* ) | ||
| eliood.3 | |- ( ph -> C e. RR ) | ||
| eliood.4 | |- ( ph -> A < C ) | ||
| eliood.5 | |- ( ph -> C < B ) | ||
| Assertion | eliood | |- ( ph -> C e. ( A (,) B ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eliood.1 | |- ( ph -> A e. RR* ) | |
| 2 | eliood.2 | |- ( ph -> B e. RR* ) | |
| 3 | eliood.3 | |- ( ph -> C e. RR ) | |
| 4 | eliood.4 | |- ( ph -> A < C ) | |
| 5 | eliood.5 | |- ( ph -> C < B ) | |
| 6 | elioo2 | |- ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A (,) B ) <-> ( C e. RR /\ A < C /\ C < B ) ) ) | |
| 7 | 1 2 6 | syl2anc | |- ( ph -> ( C e. ( A (,) B ) <-> ( C e. RR /\ A < C /\ C < B ) ) ) | 
| 8 | 3 4 5 7 | mpbir3and | |- ( ph -> C e. ( A (,) B ) ) |