| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mnfxr |
|- -oo e. RR* |
| 2 |
|
elioo2 |
|- ( ( -oo e. RR* /\ A e. RR* ) -> ( B e. ( -oo (,) A ) <-> ( B e. RR /\ -oo < B /\ B < A ) ) ) |
| 3 |
1 2
|
mpan |
|- ( A e. RR* -> ( B e. ( -oo (,) A ) <-> ( B e. RR /\ -oo < B /\ B < A ) ) ) |
| 4 |
|
an32 |
|- ( ( ( B e. RR /\ -oo < B ) /\ B < A ) <-> ( ( B e. RR /\ B < A ) /\ -oo < B ) ) |
| 5 |
|
df-3an |
|- ( ( B e. RR /\ -oo < B /\ B < A ) <-> ( ( B e. RR /\ -oo < B ) /\ B < A ) ) |
| 6 |
|
mnflt |
|- ( B e. RR -> -oo < B ) |
| 7 |
6
|
adantr |
|- ( ( B e. RR /\ B < A ) -> -oo < B ) |
| 8 |
7
|
pm4.71i |
|- ( ( B e. RR /\ B < A ) <-> ( ( B e. RR /\ B < A ) /\ -oo < B ) ) |
| 9 |
4 5 8
|
3bitr4i |
|- ( ( B e. RR /\ -oo < B /\ B < A ) <-> ( B e. RR /\ B < A ) ) |
| 10 |
3 9
|
bitrdi |
|- ( A e. RR* -> ( B e. ( -oo (,) A ) <-> ( B e. RR /\ B < A ) ) ) |