Description: A member of an open interval of reals is a real. (Contributed by NM, 17-Aug-2008) (Revised by Mario Carneiro, 3-Nov-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | elioore | |- ( A e. ( B (,) C ) -> A e. RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioo3g | |- ( A e. ( B (,) C ) <-> ( ( B e. RR* /\ C e. RR* /\ A e. RR* ) /\ ( B < A /\ A < C ) ) ) |
|
2 | 3ancomb | |- ( ( B e. RR* /\ C e. RR* /\ A e. RR* ) <-> ( B e. RR* /\ A e. RR* /\ C e. RR* ) ) |
|
3 | xrre2 | |- ( ( ( B e. RR* /\ A e. RR* /\ C e. RR* ) /\ ( B < A /\ A < C ) ) -> A e. RR ) |
|
4 | 2 3 | sylanb | |- ( ( ( B e. RR* /\ C e. RR* /\ A e. RR* ) /\ ( B < A /\ A < C ) ) -> A e. RR ) |
5 | 1 4 | sylbi | |- ( A e. ( B (,) C ) -> A e. RR ) |