Description: A member of an open interval of reals is a real. (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | elioored.1 | |- ( ph -> A e. ( B (,) C ) ) |
|
Assertion | elioored | |- ( ph -> A e. RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioored.1 | |- ( ph -> A e. ( B (,) C ) ) |
|
2 | elioore | |- ( A e. ( B (,) C ) -> A e. RR ) |
|
3 | 1 2 | syl | |- ( ph -> A e. RR ) |