Metamath Proof Explorer


Theorem eliooxr

Description: A nonempty open interval spans an interval of extended reals. (Contributed by NM, 17-Aug-2008)

Ref Expression
Assertion eliooxr
|- ( A e. ( B (,) C ) -> ( B e. RR* /\ C e. RR* ) )

Proof

Step Hyp Ref Expression
1 ne0i
 |-  ( A e. ( B (,) C ) -> ( B (,) C ) =/= (/) )
2 ndmioo
 |-  ( -. ( B e. RR* /\ C e. RR* ) -> ( B (,) C ) = (/) )
3 2 necon1ai
 |-  ( ( B (,) C ) =/= (/) -> ( B e. RR* /\ C e. RR* ) )
4 1 3 syl
 |-  ( A e. ( B (,) C ) -> ( B e. RR* /\ C e. RR* ) )