Metamath Proof Explorer


Theorem elirr

Description: No class is a member of itself. Exercise 6 of TakeutiZaring p. 22. (Contributed by NM, 7-Aug-1994) (Proof shortened by Andrew Salmon, 9-Jul-2011)

Ref Expression
Assertion elirr
|- -. A e. A

Proof

Step Hyp Ref Expression
1 id
 |-  ( x = A -> x = A )
2 1 1 eleq12d
 |-  ( x = A -> ( x e. x <-> A e. A ) )
3 2 notbid
 |-  ( x = A -> ( -. x e. x <-> -. A e. A ) )
4 elirrv
 |-  -. x e. x
5 3 4 vtoclg
 |-  ( A e. A -> -. A e. A )
6 pm2.01
 |-  ( ( A e. A -> -. A e. A ) -> -. A e. A )
7 5 6 ax-mp
 |-  -. A e. A