Metamath Proof Explorer


Theorem elirrvALT

Description: Alternate proof of elirrv , shorter but using more axioms. (Contributed by BTernaryTau, 28-Dec-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion elirrvALT
|- -. x e. x

Proof

Step Hyp Ref Expression
1 zfregfr
 |-  _E Fr x
2 efrirr
 |-  ( _E Fr x -> -. x e. x )
3 1 2 ax-mp
 |-  -. x e. x