Metamath Proof Explorer


Theorem elisset

Description: An element of a class exists. (Contributed by NM, 1-May-1995) Reduce dependencies on axioms. (Revised by BJ, 29-Apr-2019)

Ref Expression
Assertion elisset
|- ( A e. V -> E. x x = A )

Proof

Step Hyp Ref Expression
1 elissetv
 |-  ( A e. V -> E. y y = A )
2 vextru
 |-  y e. { z | T. }
3 2 biantru
 |-  ( y = A <-> ( y = A /\ y e. { z | T. } ) )
4 3 exbii
 |-  ( E. y y = A <-> E. y ( y = A /\ y e. { z | T. } ) )
5 dfclel
 |-  ( A e. { z | T. } <-> E. y ( y = A /\ y e. { z | T. } ) )
6 4 5 bitr4i
 |-  ( E. y y = A <-> A e. { z | T. } )
7 vextru
 |-  x e. { z | T. }
8 7 biantru
 |-  ( x = A <-> ( x = A /\ x e. { z | T. } ) )
9 8 exbii
 |-  ( E. x x = A <-> E. x ( x = A /\ x e. { z | T. } ) )
10 dfclel
 |-  ( A e. { z | T. } <-> E. x ( x = A /\ x e. { z | T. } ) )
11 9 10 bitr4i
 |-  ( E. x x = A <-> A e. { z | T. } )
12 6 11 bitr4i
 |-  ( E. y y = A <-> E. x x = A )
13 1 12 sylib
 |-  ( A e. V -> E. x x = A )