Metamath Proof Explorer


Theorem eliund

Description: Membership in indexed union. (Contributed by Glauco Siliprandi, 15-Feb-2025)

Ref Expression
Hypothesis eliund.1
|- ( ph -> E. x e. B A e. C )
Assertion eliund
|- ( ph -> A e. U_ x e. B C )

Proof

Step Hyp Ref Expression
1 eliund.1
 |-  ( ph -> E. x e. B A e. C )
2 eliun
 |-  ( A e. U_ x e. B C <-> E. x e. B A e. C )
3 1 2 sylibr
 |-  ( ph -> A e. U_ x e. B C )