Description: Membership in an indexed union, one way. (Contributed by JJ, 27-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eliuni.1 | |- ( x = A -> B = C ) |
|
| Assertion | eliuni | |- ( ( A e. D /\ E e. C ) -> E e. U_ x e. D B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliuni.1 | |- ( x = A -> B = C ) |
|
| 2 | 1 | eleq2d | |- ( x = A -> ( E e. B <-> E e. C ) ) |
| 3 | 2 | rspcev | |- ( ( A e. D /\ E e. C ) -> E. x e. D E e. B ) |
| 4 | eliun | |- ( E e. U_ x e. D B <-> E. x e. D E e. B ) |
|
| 5 | 3 4 | sylibr | |- ( ( A e. D /\ E e. C ) -> E e. U_ x e. D B ) |