Metamath Proof Explorer


Theorem eliuni

Description: Membership in an indexed union, one way. (Contributed by JJ, 27-Jul-2021)

Ref Expression
Hypothesis eliuni.1
|- ( x = A -> B = C )
Assertion eliuni
|- ( ( A e. D /\ E e. C ) -> E e. U_ x e. D B )

Proof

Step Hyp Ref Expression
1 eliuni.1
 |-  ( x = A -> B = C )
2 1 eleq2d
 |-  ( x = A -> ( E e. B <-> E e. C ) )
3 2 rspcev
 |-  ( ( A e. D /\ E e. C ) -> E. x e. D E e. B )
4 eliun
 |-  ( E e. U_ x e. D B <-> E. x e. D E e. B )
5 3 4 sylibr
 |-  ( ( A e. D /\ E e. C ) -> E e. U_ x e. D B )