Description: Membership in indexed union. (Contributed by Glauco Siliprandi, 5-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | eliunid | |- ( ( x e. A /\ C e. B ) -> C e. U_ x e. A B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspe | |- ( ( x e. A /\ C e. B ) -> E. x e. A C e. B ) |
|
2 | eliun | |- ( C e. U_ x e. A B <-> E. x e. A C e. B ) |
|
3 | 1 2 | sylibr | |- ( ( x e. A /\ C e. B ) -> C e. U_ x e. A B ) |