Metamath Proof Explorer


Theorem elixp

Description: Membership in an infinite Cartesian product. (Contributed by NM, 28-Sep-2006)

Ref Expression
Hypothesis elixp.1
|- F e. _V
Assertion elixp
|- ( F e. X_ x e. A B <-> ( F Fn A /\ A. x e. A ( F ` x ) e. B ) )

Proof

Step Hyp Ref Expression
1 elixp.1
 |-  F e. _V
2 elixp2
 |-  ( F e. X_ x e. A B <-> ( F e. _V /\ F Fn A /\ A. x e. A ( F ` x ) e. B ) )
3 3anass
 |-  ( ( F e. _V /\ F Fn A /\ A. x e. A ( F ` x ) e. B ) <-> ( F e. _V /\ ( F Fn A /\ A. x e. A ( F ` x ) e. B ) ) )
4 1 3 mpbiran
 |-  ( ( F e. _V /\ F Fn A /\ A. x e. A ( F ` x ) e. B ) <-> ( F Fn A /\ A. x e. A ( F ` x ) e. B ) )
5 2 4 bitri
 |-  ( F e. X_ x e. A B <-> ( F Fn A /\ A. x e. A ( F ` x ) e. B ) )