Metamath Proof Explorer


Theorem elixpconst

Description: Membership in an infinite Cartesian product of a constant B . (Contributed by NM, 12-Apr-2008)

Ref Expression
Hypothesis elixp.1
|- F e. _V
Assertion elixpconst
|- ( F e. X_ x e. A B <-> F : A --> B )

Proof

Step Hyp Ref Expression
1 elixp.1
 |-  F e. _V
2 1 elixp
 |-  ( F e. X_ x e. A B <-> ( F Fn A /\ A. x e. A ( F ` x ) e. B ) )
3 ffnfv
 |-  ( F : A --> B <-> ( F Fn A /\ A. x e. A ( F ` x ) e. B ) )
4 2 3 bitr4i
 |-  ( F e. X_ x e. A B <-> F : A --> B )