Step |
Hyp |
Ref |
Expression |
1 |
|
sneq |
|- ( z = A -> { z } = { A } ) |
2 |
1
|
ixpeq1d |
|- ( z = A -> X_ x e. { z } B = X_ x e. { A } B ) |
3 |
2
|
eleq2d |
|- ( z = A -> ( F e. X_ x e. { z } B <-> F e. X_ x e. { A } B ) ) |
4 |
|
opeq1 |
|- ( z = A -> <. z , y >. = <. A , y >. ) |
5 |
4
|
sneqd |
|- ( z = A -> { <. z , y >. } = { <. A , y >. } ) |
6 |
5
|
eqeq2d |
|- ( z = A -> ( F = { <. z , y >. } <-> F = { <. A , y >. } ) ) |
7 |
6
|
rexbidv |
|- ( z = A -> ( E. y e. B F = { <. z , y >. } <-> E. y e. B F = { <. A , y >. } ) ) |
8 |
|
elex |
|- ( F e. X_ x e. { z } B -> F e. _V ) |
9 |
|
snex |
|- { <. z , y >. } e. _V |
10 |
|
eleq1 |
|- ( F = { <. z , y >. } -> ( F e. _V <-> { <. z , y >. } e. _V ) ) |
11 |
9 10
|
mpbiri |
|- ( F = { <. z , y >. } -> F e. _V ) |
12 |
11
|
rexlimivw |
|- ( E. y e. B F = { <. z , y >. } -> F e. _V ) |
13 |
|
eleq1 |
|- ( w = F -> ( w e. X_ x e. { z } B <-> F e. X_ x e. { z } B ) ) |
14 |
|
eqeq1 |
|- ( w = F -> ( w = { <. z , y >. } <-> F = { <. z , y >. } ) ) |
15 |
14
|
rexbidv |
|- ( w = F -> ( E. y e. B w = { <. z , y >. } <-> E. y e. B F = { <. z , y >. } ) ) |
16 |
|
vex |
|- w e. _V |
17 |
16
|
elixp |
|- ( w e. X_ x e. { z } B <-> ( w Fn { z } /\ A. x e. { z } ( w ` x ) e. B ) ) |
18 |
|
vex |
|- z e. _V |
19 |
|
fveq2 |
|- ( x = z -> ( w ` x ) = ( w ` z ) ) |
20 |
19
|
eleq1d |
|- ( x = z -> ( ( w ` x ) e. B <-> ( w ` z ) e. B ) ) |
21 |
18 20
|
ralsn |
|- ( A. x e. { z } ( w ` x ) e. B <-> ( w ` z ) e. B ) |
22 |
21
|
anbi2i |
|- ( ( w Fn { z } /\ A. x e. { z } ( w ` x ) e. B ) <-> ( w Fn { z } /\ ( w ` z ) e. B ) ) |
23 |
|
simpl |
|- ( ( w Fn { z } /\ ( w ` z ) e. B ) -> w Fn { z } ) |
24 |
|
fveq2 |
|- ( y = z -> ( w ` y ) = ( w ` z ) ) |
25 |
24
|
eleq1d |
|- ( y = z -> ( ( w ` y ) e. B <-> ( w ` z ) e. B ) ) |
26 |
18 25
|
ralsn |
|- ( A. y e. { z } ( w ` y ) e. B <-> ( w ` z ) e. B ) |
27 |
26
|
biimpri |
|- ( ( w ` z ) e. B -> A. y e. { z } ( w ` y ) e. B ) |
28 |
27
|
adantl |
|- ( ( w Fn { z } /\ ( w ` z ) e. B ) -> A. y e. { z } ( w ` y ) e. B ) |
29 |
|
ffnfv |
|- ( w : { z } --> B <-> ( w Fn { z } /\ A. y e. { z } ( w ` y ) e. B ) ) |
30 |
23 28 29
|
sylanbrc |
|- ( ( w Fn { z } /\ ( w ` z ) e. B ) -> w : { z } --> B ) |
31 |
18
|
fsn2 |
|- ( w : { z } --> B <-> ( ( w ` z ) e. B /\ w = { <. z , ( w ` z ) >. } ) ) |
32 |
30 31
|
sylib |
|- ( ( w Fn { z } /\ ( w ` z ) e. B ) -> ( ( w ` z ) e. B /\ w = { <. z , ( w ` z ) >. } ) ) |
33 |
|
opeq2 |
|- ( y = ( w ` z ) -> <. z , y >. = <. z , ( w ` z ) >. ) |
34 |
33
|
sneqd |
|- ( y = ( w ` z ) -> { <. z , y >. } = { <. z , ( w ` z ) >. } ) |
35 |
34
|
rspceeqv |
|- ( ( ( w ` z ) e. B /\ w = { <. z , ( w ` z ) >. } ) -> E. y e. B w = { <. z , y >. } ) |
36 |
32 35
|
syl |
|- ( ( w Fn { z } /\ ( w ` z ) e. B ) -> E. y e. B w = { <. z , y >. } ) |
37 |
|
vex |
|- y e. _V |
38 |
18 37
|
fvsn |
|- ( { <. z , y >. } ` z ) = y |
39 |
|
id |
|- ( y e. B -> y e. B ) |
40 |
38 39
|
eqeltrid |
|- ( y e. B -> ( { <. z , y >. } ` z ) e. B ) |
41 |
18 37
|
fnsn |
|- { <. z , y >. } Fn { z } |
42 |
40 41
|
jctil |
|- ( y e. B -> ( { <. z , y >. } Fn { z } /\ ( { <. z , y >. } ` z ) e. B ) ) |
43 |
|
fneq1 |
|- ( w = { <. z , y >. } -> ( w Fn { z } <-> { <. z , y >. } Fn { z } ) ) |
44 |
|
fveq1 |
|- ( w = { <. z , y >. } -> ( w ` z ) = ( { <. z , y >. } ` z ) ) |
45 |
44
|
eleq1d |
|- ( w = { <. z , y >. } -> ( ( w ` z ) e. B <-> ( { <. z , y >. } ` z ) e. B ) ) |
46 |
43 45
|
anbi12d |
|- ( w = { <. z , y >. } -> ( ( w Fn { z } /\ ( w ` z ) e. B ) <-> ( { <. z , y >. } Fn { z } /\ ( { <. z , y >. } ` z ) e. B ) ) ) |
47 |
42 46
|
syl5ibrcom |
|- ( y e. B -> ( w = { <. z , y >. } -> ( w Fn { z } /\ ( w ` z ) e. B ) ) ) |
48 |
47
|
rexlimiv |
|- ( E. y e. B w = { <. z , y >. } -> ( w Fn { z } /\ ( w ` z ) e. B ) ) |
49 |
36 48
|
impbii |
|- ( ( w Fn { z } /\ ( w ` z ) e. B ) <-> E. y e. B w = { <. z , y >. } ) |
50 |
17 22 49
|
3bitri |
|- ( w e. X_ x e. { z } B <-> E. y e. B w = { <. z , y >. } ) |
51 |
13 15 50
|
vtoclbg |
|- ( F e. _V -> ( F e. X_ x e. { z } B <-> E. y e. B F = { <. z , y >. } ) ) |
52 |
8 12 51
|
pm5.21nii |
|- ( F e. X_ x e. { z } B <-> E. y e. B F = { <. z , y >. } ) |
53 |
3 7 52
|
vtoclbg |
|- ( A e. V -> ( F e. X_ x e. { A } B <-> E. y e. B F = { <. A , y >. } ) ) |