Step |
Hyp |
Ref |
Expression |
1 |
|
ellspd.n |
|- N = ( LSpan ` M ) |
2 |
|
ellspd.v |
|- B = ( Base ` M ) |
3 |
|
ellspd.k |
|- K = ( Base ` S ) |
4 |
|
ellspd.s |
|- S = ( Scalar ` M ) |
5 |
|
ellspd.z |
|- .0. = ( 0g ` S ) |
6 |
|
ellspd.t |
|- .x. = ( .s ` M ) |
7 |
|
ellspd.f |
|- ( ph -> F : I --> B ) |
8 |
|
ellspd.m |
|- ( ph -> M e. LMod ) |
9 |
|
ellspd.i |
|- ( ph -> I e. V ) |
10 |
|
ffn |
|- ( F : I --> B -> F Fn I ) |
11 |
|
fnima |
|- ( F Fn I -> ( F " I ) = ran F ) |
12 |
7 10 11
|
3syl |
|- ( ph -> ( F " I ) = ran F ) |
13 |
12
|
fveq2d |
|- ( ph -> ( N ` ( F " I ) ) = ( N ` ran F ) ) |
14 |
|
eqid |
|- ( f e. ( Base ` ( S freeLMod I ) ) |-> ( M gsum ( f oF .x. F ) ) ) = ( f e. ( Base ` ( S freeLMod I ) ) |-> ( M gsum ( f oF .x. F ) ) ) |
15 |
14
|
rnmpt |
|- ran ( f e. ( Base ` ( S freeLMod I ) ) |-> ( M gsum ( f oF .x. F ) ) ) = { a | E. f e. ( Base ` ( S freeLMod I ) ) a = ( M gsum ( f oF .x. F ) ) } |
16 |
|
eqid |
|- ( S freeLMod I ) = ( S freeLMod I ) |
17 |
|
eqid |
|- ( Base ` ( S freeLMod I ) ) = ( Base ` ( S freeLMod I ) ) |
18 |
4
|
a1i |
|- ( ph -> S = ( Scalar ` M ) ) |
19 |
16 17 2 6 14 8 9 18 7 1
|
frlmup3 |
|- ( ph -> ran ( f e. ( Base ` ( S freeLMod I ) ) |-> ( M gsum ( f oF .x. F ) ) ) = ( N ` ran F ) ) |
20 |
15 19
|
eqtr3id |
|- ( ph -> { a | E. f e. ( Base ` ( S freeLMod I ) ) a = ( M gsum ( f oF .x. F ) ) } = ( N ` ran F ) ) |
21 |
13 20
|
eqtr4d |
|- ( ph -> ( N ` ( F " I ) ) = { a | E. f e. ( Base ` ( S freeLMod I ) ) a = ( M gsum ( f oF .x. F ) ) } ) |
22 |
21
|
eleq2d |
|- ( ph -> ( X e. ( N ` ( F " I ) ) <-> X e. { a | E. f e. ( Base ` ( S freeLMod I ) ) a = ( M gsum ( f oF .x. F ) ) } ) ) |
23 |
|
ovex |
|- ( M gsum ( f oF .x. F ) ) e. _V |
24 |
|
eleq1 |
|- ( X = ( M gsum ( f oF .x. F ) ) -> ( X e. _V <-> ( M gsum ( f oF .x. F ) ) e. _V ) ) |
25 |
23 24
|
mpbiri |
|- ( X = ( M gsum ( f oF .x. F ) ) -> X e. _V ) |
26 |
25
|
rexlimivw |
|- ( E. f e. ( Base ` ( S freeLMod I ) ) X = ( M gsum ( f oF .x. F ) ) -> X e. _V ) |
27 |
|
eqeq1 |
|- ( a = X -> ( a = ( M gsum ( f oF .x. F ) ) <-> X = ( M gsum ( f oF .x. F ) ) ) ) |
28 |
27
|
rexbidv |
|- ( a = X -> ( E. f e. ( Base ` ( S freeLMod I ) ) a = ( M gsum ( f oF .x. F ) ) <-> E. f e. ( Base ` ( S freeLMod I ) ) X = ( M gsum ( f oF .x. F ) ) ) ) |
29 |
26 28
|
elab3 |
|- ( X e. { a | E. f e. ( Base ` ( S freeLMod I ) ) a = ( M gsum ( f oF .x. F ) ) } <-> E. f e. ( Base ` ( S freeLMod I ) ) X = ( M gsum ( f oF .x. F ) ) ) |
30 |
4
|
fvexi |
|- S e. _V |
31 |
|
eqid |
|- { a e. ( K ^m I ) | a finSupp .0. } = { a e. ( K ^m I ) | a finSupp .0. } |
32 |
16 3 5 31
|
frlmbas |
|- ( ( S e. _V /\ I e. V ) -> { a e. ( K ^m I ) | a finSupp .0. } = ( Base ` ( S freeLMod I ) ) ) |
33 |
30 9 32
|
sylancr |
|- ( ph -> { a e. ( K ^m I ) | a finSupp .0. } = ( Base ` ( S freeLMod I ) ) ) |
34 |
33
|
eqcomd |
|- ( ph -> ( Base ` ( S freeLMod I ) ) = { a e. ( K ^m I ) | a finSupp .0. } ) |
35 |
34
|
rexeqdv |
|- ( ph -> ( E. f e. ( Base ` ( S freeLMod I ) ) X = ( M gsum ( f oF .x. F ) ) <-> E. f e. { a e. ( K ^m I ) | a finSupp .0. } X = ( M gsum ( f oF .x. F ) ) ) ) |
36 |
|
breq1 |
|- ( a = f -> ( a finSupp .0. <-> f finSupp .0. ) ) |
37 |
36
|
rexrab |
|- ( E. f e. { a e. ( K ^m I ) | a finSupp .0. } X = ( M gsum ( f oF .x. F ) ) <-> E. f e. ( K ^m I ) ( f finSupp .0. /\ X = ( M gsum ( f oF .x. F ) ) ) ) |
38 |
35 37
|
bitrdi |
|- ( ph -> ( E. f e. ( Base ` ( S freeLMod I ) ) X = ( M gsum ( f oF .x. F ) ) <-> E. f e. ( K ^m I ) ( f finSupp .0. /\ X = ( M gsum ( f oF .x. F ) ) ) ) ) |
39 |
29 38
|
syl5bb |
|- ( ph -> ( X e. { a | E. f e. ( Base ` ( S freeLMod I ) ) a = ( M gsum ( f oF .x. F ) ) } <-> E. f e. ( K ^m I ) ( f finSupp .0. /\ X = ( M gsum ( f oF .x. F ) ) ) ) ) |
40 |
22 39
|
bitrd |
|- ( ph -> ( X e. ( N ` ( F " I ) ) <-> E. f e. ( K ^m I ) ( f finSupp .0. /\ X = ( M gsum ( f oF .x. F ) ) ) ) ) |