Description: A member of the span of the singleton of a vector is a member of a subspace containing the vector. ( elspansn3 analog.) (Contributed by NM, 4-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsnss.s | |- S = ( LSubSp ` W ) | |
| lspsnss.n | |- N = ( LSpan ` W ) | ||
| ellspsn3.w | |- ( ph -> W e. LMod ) | ||
| ellspsn3.u | |- ( ph -> U e. S ) | ||
| ellspsn3.x | |- ( ph -> X e. U ) | ||
| ellspsn3.y | |- ( ph -> Y e. ( N ` { X } ) ) | ||
| Assertion | ellspsn3 | |- ( ph -> Y e. U ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lspsnss.s | |- S = ( LSubSp ` W ) | |
| 2 | lspsnss.n | |- N = ( LSpan ` W ) | |
| 3 | ellspsn3.w | |- ( ph -> W e. LMod ) | |
| 4 | ellspsn3.u | |- ( ph -> U e. S ) | |
| 5 | ellspsn3.x | |- ( ph -> X e. U ) | |
| 6 | ellspsn3.y |  |-  ( ph -> Y e. ( N ` { X } ) ) | |
| 7 | 1 2 | lspsnss |  |-  ( ( W e. LMod /\ U e. S /\ X e. U ) -> ( N ` { X } ) C_ U ) | 
| 8 | 3 4 5 7 | syl3anc |  |-  ( ph -> ( N ` { X } ) C_ U ) | 
| 9 | 8 6 | sseldd | |- ( ph -> Y e. U ) |