| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ellspsn4.v |
|- V = ( Base ` W ) |
| 2 |
|
ellspsn4.o |
|- .0. = ( 0g ` W ) |
| 3 |
|
ellspsn4.s |
|- S = ( LSubSp ` W ) |
| 4 |
|
ellspsn4.n |
|- N = ( LSpan ` W ) |
| 5 |
|
ellspsn4.w |
|- ( ph -> W e. LVec ) |
| 6 |
|
ellspsn4.u |
|- ( ph -> U e. S ) |
| 7 |
|
ellspsn4.x |
|- ( ph -> X e. V ) |
| 8 |
|
ellspsn4.y |
|- ( ph -> Y e. ( N ` { X } ) ) |
| 9 |
|
ellspsn4.z |
|- ( ph -> Y =/= .0. ) |
| 10 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
| 11 |
5 10
|
syl |
|- ( ph -> W e. LMod ) |
| 12 |
11
|
adantr |
|- ( ( ph /\ X e. U ) -> W e. LMod ) |
| 13 |
6
|
adantr |
|- ( ( ph /\ X e. U ) -> U e. S ) |
| 14 |
|
simpr |
|- ( ( ph /\ X e. U ) -> X e. U ) |
| 15 |
8
|
adantr |
|- ( ( ph /\ X e. U ) -> Y e. ( N ` { X } ) ) |
| 16 |
3 4 12 13 14 15
|
ellspsn3 |
|- ( ( ph /\ X e. U ) -> Y e. U ) |
| 17 |
11
|
adantr |
|- ( ( ph /\ Y e. U ) -> W e. LMod ) |
| 18 |
6
|
adantr |
|- ( ( ph /\ Y e. U ) -> U e. S ) |
| 19 |
|
simpr |
|- ( ( ph /\ Y e. U ) -> Y e. U ) |
| 20 |
1 4
|
lspsnid |
|- ( ( W e. LMod /\ X e. V ) -> X e. ( N ` { X } ) ) |
| 21 |
11 7 20
|
syl2anc |
|- ( ph -> X e. ( N ` { X } ) ) |
| 22 |
1 2 4 5 7 8 9
|
lspsneleq |
|- ( ph -> ( N ` { Y } ) = ( N ` { X } ) ) |
| 23 |
21 22
|
eleqtrrd |
|- ( ph -> X e. ( N ` { Y } ) ) |
| 24 |
23
|
adantr |
|- ( ( ph /\ Y e. U ) -> X e. ( N ` { Y } ) ) |
| 25 |
3 4 17 18 19 24
|
ellspsn3 |
|- ( ( ph /\ Y e. U ) -> X e. U ) |
| 26 |
16 25
|
impbida |
|- ( ph -> ( X e. U <-> Y e. U ) ) |