Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 20-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ellspsn5.s | |- S = ( LSubSp ` W ) |
|
ellspsn5.n | |- N = ( LSpan ` W ) |
||
ellspsn5.w | |- ( ph -> W e. LMod ) |
||
ellspsn5.a | |- ( ph -> U e. S ) |
||
ellspsn5.x | |- ( ph -> X e. U ) |
||
Assertion | ellspsn5 | |- ( ph -> ( N ` { X } ) C_ U ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ellspsn5.s | |- S = ( LSubSp ` W ) |
|
2 | ellspsn5.n | |- N = ( LSpan ` W ) |
|
3 | ellspsn5.w | |- ( ph -> W e. LMod ) |
|
4 | ellspsn5.a | |- ( ph -> U e. S ) |
|
5 | ellspsn5.x | |- ( ph -> X e. U ) |
|
6 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
7 | 6 1 | lssel | |- ( ( U e. S /\ X e. U ) -> X e. ( Base ` W ) ) |
8 | 4 5 7 | syl2anc | |- ( ph -> X e. ( Base ` W ) ) |
9 | 6 1 2 3 4 8 | ellspsn5b | |- ( ph -> ( X e. U <-> ( N ` { X } ) C_ U ) ) |
10 | 5 9 | mpbid | |- ( ph -> ( N ` { X } ) C_ U ) |