Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 20-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ellspsn5.s | |- S = ( LSubSp ` W ) |
|
| ellspsn5.n | |- N = ( LSpan ` W ) |
||
| ellspsn5.w | |- ( ph -> W e. LMod ) |
||
| ellspsn5.a | |- ( ph -> U e. S ) |
||
| ellspsn5.x | |- ( ph -> X e. U ) |
||
| Assertion | ellspsn5 | |- ( ph -> ( N ` { X } ) C_ U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellspsn5.s | |- S = ( LSubSp ` W ) |
|
| 2 | ellspsn5.n | |- N = ( LSpan ` W ) |
|
| 3 | ellspsn5.w | |- ( ph -> W e. LMod ) |
|
| 4 | ellspsn5.a | |- ( ph -> U e. S ) |
|
| 5 | ellspsn5.x | |- ( ph -> X e. U ) |
|
| 6 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 7 | 6 1 | lssel | |- ( ( U e. S /\ X e. U ) -> X e. ( Base ` W ) ) |
| 8 | 4 5 7 | syl2anc | |- ( ph -> X e. ( Base ` W ) ) |
| 9 | 6 1 2 3 4 8 | ellspsn5b | |- ( ph -> ( X e. U <-> ( N ` { X } ) C_ U ) ) |
| 10 | 5 9 | mpbid | |- ( ph -> ( N ` { X } ) C_ U ) |