Metamath Proof Explorer


Theorem ellspsn5b

Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014)

Ref Expression
Hypotheses ellspsn5b.v
|- V = ( Base ` W )
ellspsn5b.s
|- S = ( LSubSp ` W )
ellspsn5b.n
|- N = ( LSpan ` W )
ellspsn5b.w
|- ( ph -> W e. LMod )
ellspsn5b.a
|- ( ph -> U e. S )
ellspsn5b.x
|- ( ph -> X e. V )
Assertion ellspsn5b
|- ( ph -> ( X e. U <-> ( N ` { X } ) C_ U ) )

Proof

Step Hyp Ref Expression
1 ellspsn5b.v
 |-  V = ( Base ` W )
2 ellspsn5b.s
 |-  S = ( LSubSp ` W )
3 ellspsn5b.n
 |-  N = ( LSpan ` W )
4 ellspsn5b.w
 |-  ( ph -> W e. LMod )
5 ellspsn5b.a
 |-  ( ph -> U e. S )
6 ellspsn5b.x
 |-  ( ph -> X e. V )
7 1 2 3 4 5 ellspsn6
 |-  ( ph -> ( X e. U <-> ( X e. V /\ ( N ` { X } ) C_ U ) ) )
8 6 7 mpbirand
 |-  ( ph -> ( X e. U <-> ( N ` { X } ) C_ U ) )