Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ellspsn5b.v | |- V = ( Base ` W ) | |
| ellspsn5b.s | |- S = ( LSubSp ` W ) | ||
| ellspsn5b.n | |- N = ( LSpan ` W ) | ||
| ellspsn5b.w | |- ( ph -> W e. LMod ) | ||
| ellspsn5b.a | |- ( ph -> U e. S ) | ||
| ellspsn5b.x | |- ( ph -> X e. V ) | ||
| Assertion | ellspsn5b | |- ( ph -> ( X e. U <-> ( N ` { X } ) C_ U ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ellspsn5b.v | |- V = ( Base ` W ) | |
| 2 | ellspsn5b.s | |- S = ( LSubSp ` W ) | |
| 3 | ellspsn5b.n | |- N = ( LSpan ` W ) | |
| 4 | ellspsn5b.w | |- ( ph -> W e. LMod ) | |
| 5 | ellspsn5b.a | |- ( ph -> U e. S ) | |
| 6 | ellspsn5b.x | |- ( ph -> X e. V ) | |
| 7 | 1 2 3 4 5 | ellspsn6 |  |-  ( ph -> ( X e. U <-> ( X e. V /\ ( N ` { X } ) C_ U ) ) ) | 
| 8 | 6 7 | mpbirand |  |-  ( ph -> ( X e. U <-> ( N ` { X } ) C_ U ) ) |