Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ellspsn5b.v | |- V = ( Base ` W ) |
|
ellspsn5b.s | |- S = ( LSubSp ` W ) |
||
ellspsn5b.n | |- N = ( LSpan ` W ) |
||
ellspsn5b.w | |- ( ph -> W e. LMod ) |
||
ellspsn5b.a | |- ( ph -> U e. S ) |
||
ellspsn5b.x | |- ( ph -> X e. V ) |
||
Assertion | ellspsn5b | |- ( ph -> ( X e. U <-> ( N ` { X } ) C_ U ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ellspsn5b.v | |- V = ( Base ` W ) |
|
2 | ellspsn5b.s | |- S = ( LSubSp ` W ) |
|
3 | ellspsn5b.n | |- N = ( LSpan ` W ) |
|
4 | ellspsn5b.w | |- ( ph -> W e. LMod ) |
|
5 | ellspsn5b.a | |- ( ph -> U e. S ) |
|
6 | ellspsn5b.x | |- ( ph -> X e. V ) |
|
7 | 1 2 3 4 5 | ellspsn6 | |- ( ph -> ( X e. U <-> ( X e. V /\ ( N ` { X } ) C_ U ) ) ) |
8 | 6 7 | mpbirand | |- ( ph -> ( X e. U <-> ( N ` { X } ) C_ U ) ) |