| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspsnvsel.v |
|- V = ( Base ` W ) |
| 2 |
|
lspsnvsel.t |
|- .x. = ( .s ` W ) |
| 3 |
|
lspsnvsel.f |
|- F = ( Scalar ` W ) |
| 4 |
|
lspsnvsel.k |
|- K = ( Base ` F ) |
| 5 |
|
lspsnvsel.n |
|- N = ( LSpan ` W ) |
| 6 |
|
lspsnvsel.w |
|- ( ph -> W e. LMod ) |
| 7 |
|
lspsnvsel.a |
|- ( ph -> A e. K ) |
| 8 |
|
lspsnvsel.x |
|- ( ph -> X e. V ) |
| 9 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
| 10 |
1 9 5
|
lspsncl |
|- ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( LSubSp ` W ) ) |
| 11 |
6 8 10
|
syl2anc |
|- ( ph -> ( N ` { X } ) e. ( LSubSp ` W ) ) |
| 12 |
1 5
|
lspsnid |
|- ( ( W e. LMod /\ X e. V ) -> X e. ( N ` { X } ) ) |
| 13 |
6 8 12
|
syl2anc |
|- ( ph -> X e. ( N ` { X } ) ) |
| 14 |
3 2 4 9
|
lssvscl |
|- ( ( ( W e. LMod /\ ( N ` { X } ) e. ( LSubSp ` W ) ) /\ ( A e. K /\ X e. ( N ` { X } ) ) ) -> ( A .x. X ) e. ( N ` { X } ) ) |
| 15 |
6 11 7 13 14
|
syl22anc |
|- ( ph -> ( A .x. X ) e. ( N ` { X } ) ) |