Metamath Proof Explorer


Theorem elmapd

Description: Deduction form of elmapg . (Contributed by BJ, 11-Apr-2020)

Ref Expression
Hypotheses elmapd.a
|- ( ph -> A e. V )
elmapd.b
|- ( ph -> B e. W )
Assertion elmapd
|- ( ph -> ( C e. ( A ^m B ) <-> C : B --> A ) )

Proof

Step Hyp Ref Expression
1 elmapd.a
 |-  ( ph -> A e. V )
2 elmapd.b
 |-  ( ph -> B e. W )
3 elmapg
 |-  ( ( A e. V /\ B e. W ) -> ( C e. ( A ^m B ) <-> C : B --> A ) )
4 1 2 3 syl2anc
 |-  ( ph -> ( C e. ( A ^m B ) <-> C : B --> A ) )