Description: Deduction form of elmapg . (Contributed by BJ, 11-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elmapd.a | |- ( ph -> A e. V ) |
|
elmapd.b | |- ( ph -> B e. W ) |
||
Assertion | elmapd | |- ( ph -> ( C e. ( A ^m B ) <-> C : B --> A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapd.a | |- ( ph -> A e. V ) |
|
2 | elmapd.b | |- ( ph -> B e. W ) |
|
3 | elmapg | |- ( ( A e. V /\ B e. W ) -> ( C e. ( A ^m B ) <-> C : B --> A ) ) |
|
4 | 1 2 3 | syl2anc | |- ( ph -> ( C e. ( A ^m B ) <-> C : B --> A ) ) |