Description: Deduction associated with elmapd . (Contributed by SN, 29-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elmapdd.a | |- ( ph -> A e. V ) |
|
| elmapdd.b | |- ( ph -> B e. W ) |
||
| elmapdd.c | |- ( ph -> C : B --> A ) |
||
| Assertion | elmapdd | |- ( ph -> C e. ( A ^m B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapdd.a | |- ( ph -> A e. V ) |
|
| 2 | elmapdd.b | |- ( ph -> B e. W ) |
|
| 3 | elmapdd.c | |- ( ph -> C : B --> A ) |
|
| 4 | 1 2 | elmapd | |- ( ph -> ( C e. ( A ^m B ) <-> C : B --> A ) ) |
| 5 | 3 4 | mpbird | |- ( ph -> C e. ( A ^m B ) ) |