| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							elmapsnd.1 | 
							 |-  ( ph -> F Fn { A } ) | 
						
						
							| 2 | 
							
								
							 | 
							elmapsnd.2 | 
							 |-  ( ph -> B e. V )  | 
						
						
							| 3 | 
							
								
							 | 
							elmapsnd.3 | 
							 |-  ( ph -> ( F ` A ) e. B )  | 
						
						
							| 4 | 
							
								
							 | 
							elsni | 
							 |-  ( x e. { A } -> x = A ) | 
						
						
							| 5 | 
							
								4
							 | 
							fveq2d | 
							 |-  ( x e. { A } -> ( F ` x ) = ( F ` A ) ) | 
						
						
							| 6 | 
							
								5
							 | 
							adantl | 
							 |-  ( ( ph /\ x e. { A } ) -> ( F ` x ) = ( F ` A ) ) | 
						
						
							| 7 | 
							
								3
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. { A } ) -> ( F ` A ) e. B ) | 
						
						
							| 8 | 
							
								6 7
							 | 
							eqeltrd | 
							 |-  ( ( ph /\ x e. { A } ) -> ( F ` x ) e. B ) | 
						
						
							| 9 | 
							
								8
							 | 
							ralrimiva | 
							 |-  ( ph -> A. x e. { A } ( F ` x ) e. B ) | 
						
						
							| 10 | 
							
								1 9
							 | 
							jca | 
							 |-  ( ph -> ( F Fn { A } /\ A. x e. { A } ( F ` x ) e. B ) ) | 
						
						
							| 11 | 
							
								
							 | 
							ffnfv | 
							 |-  ( F : { A } --> B <-> ( F Fn { A } /\ A. x e. { A } ( F ` x ) e. B ) ) | 
						
						
							| 12 | 
							
								10 11
							 | 
							sylibr | 
							 |-  ( ph -> F : { A } --> B ) | 
						
						
							| 13 | 
							
								
							 | 
							snex | 
							 |-  { A } e. _V | 
						
						
							| 14 | 
							
								13
							 | 
							a1i | 
							 |-  ( ph -> { A } e. _V ) | 
						
						
							| 15 | 
							
								2 14
							 | 
							elmapd | 
							 |-  ( ph -> ( F e. ( B ^m { A } ) <-> F : { A } --> B ) ) | 
						
						
							| 16 | 
							
								12 15
							 | 
							mpbird | 
							 |-  ( ph -> F e. ( B ^m { A } ) ) |