Metamath Proof Explorer


Theorem elmapssresd

Description: A restricted mapping is a mapping. EDITORIAL: Could be used to shorten elpm2r with some reordering involving mapsspm . (Contributed by SN, 11-Mar-2025)

Ref Expression
Hypotheses elmapssresd.1
|- ( ph -> A e. ( B ^m C ) )
elmapssresd.2
|- ( ph -> D C_ C )
Assertion elmapssresd
|- ( ph -> ( A |` D ) e. ( B ^m D ) )

Proof

Step Hyp Ref Expression
1 elmapssresd.1
 |-  ( ph -> A e. ( B ^m C ) )
2 elmapssresd.2
 |-  ( ph -> D C_ C )
3 elmapssres
 |-  ( ( A e. ( B ^m C ) /\ D C_ C ) -> ( A |` D ) e. ( B ^m D ) )
4 1 2 3 syl2anc
 |-  ( ph -> ( A |` D ) e. ( B ^m D ) )