Metamath Proof Explorer


Theorem elmopn2

Description: A defining property of an open set of a metric space. (Contributed by NM, 5-May-2007) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Hypothesis mopnval.1
|- J = ( MetOpen ` D )
Assertion elmopn2
|- ( D e. ( *Met ` X ) -> ( A e. J <-> ( A C_ X /\ A. x e. A E. y e. RR+ ( x ( ball ` D ) y ) C_ A ) ) )

Proof

Step Hyp Ref Expression
1 mopnval.1
 |-  J = ( MetOpen ` D )
2 1 elmopn
 |-  ( D e. ( *Met ` X ) -> ( A e. J <-> ( A C_ X /\ A. x e. A E. z e. ran ( ball ` D ) ( x e. z /\ z C_ A ) ) ) )
3 ssel2
 |-  ( ( A C_ X /\ x e. A ) -> x e. X )
4 blssex
 |-  ( ( D e. ( *Met ` X ) /\ x e. X ) -> ( E. z e. ran ( ball ` D ) ( x e. z /\ z C_ A ) <-> E. y e. RR+ ( x ( ball ` D ) y ) C_ A ) )
5 3 4 sylan2
 |-  ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ x e. A ) ) -> ( E. z e. ran ( ball ` D ) ( x e. z /\ z C_ A ) <-> E. y e. RR+ ( x ( ball ` D ) y ) C_ A ) )
6 5 anassrs
 |-  ( ( ( D e. ( *Met ` X ) /\ A C_ X ) /\ x e. A ) -> ( E. z e. ran ( ball ` D ) ( x e. z /\ z C_ A ) <-> E. y e. RR+ ( x ( ball ` D ) y ) C_ A ) )
7 6 ralbidva
 |-  ( ( D e. ( *Met ` X ) /\ A C_ X ) -> ( A. x e. A E. z e. ran ( ball ` D ) ( x e. z /\ z C_ A ) <-> A. x e. A E. y e. RR+ ( x ( ball ` D ) y ) C_ A ) )
8 7 pm5.32da
 |-  ( D e. ( *Met ` X ) -> ( ( A C_ X /\ A. x e. A E. z e. ran ( ball ` D ) ( x e. z /\ z C_ A ) ) <-> ( A C_ X /\ A. x e. A E. y e. RR+ ( x ( ball ` D ) y ) C_ A ) ) )
9 2 8 bitrd
 |-  ( D e. ( *Met ` X ) -> ( A e. J <-> ( A C_ X /\ A. x e. A E. y e. RR+ ( x ( ball ` D ) y ) C_ A ) ) )