| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elmpocl.f |  |-  F = ( x e. A , y e. B |-> C ) | 
						
							| 2 |  | df-mpo |  |-  ( x e. A , y e. B |-> C ) = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } | 
						
							| 3 | 1 2 | eqtri |  |-  F = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } | 
						
							| 4 | 3 | dmeqi |  |-  dom F = dom { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } | 
						
							| 5 |  | dmoprabss |  |-  dom { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } C_ ( A X. B ) | 
						
							| 6 | 4 5 | eqsstri |  |-  dom F C_ ( A X. B ) | 
						
							| 7 |  | elfvdm |  |-  ( X e. ( F ` <. S , T >. ) -> <. S , T >. e. dom F ) | 
						
							| 8 |  | df-ov |  |-  ( S F T ) = ( F ` <. S , T >. ) | 
						
							| 9 | 7 8 | eleq2s |  |-  ( X e. ( S F T ) -> <. S , T >. e. dom F ) | 
						
							| 10 | 6 9 | sselid |  |-  ( X e. ( S F T ) -> <. S , T >. e. ( A X. B ) ) | 
						
							| 11 |  | opelxp |  |-  ( <. S , T >. e. ( A X. B ) <-> ( S e. A /\ T e. B ) ) | 
						
							| 12 | 10 11 | sylib |  |-  ( X e. ( S F T ) -> ( S e. A /\ T e. B ) ) |