Step |
Hyp |
Ref |
Expression |
1 |
|
elmpocl.f |
|- F = ( x e. A , y e. B |-> C ) |
2 |
|
df-mpo |
|- ( x e. A , y e. B |-> C ) = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } |
3 |
1 2
|
eqtri |
|- F = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } |
4 |
3
|
dmeqi |
|- dom F = dom { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } |
5 |
|
dmoprabss |
|- dom { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } C_ ( A X. B ) |
6 |
4 5
|
eqsstri |
|- dom F C_ ( A X. B ) |
7 |
|
elfvdm |
|- ( X e. ( F ` <. S , T >. ) -> <. S , T >. e. dom F ) |
8 |
|
df-ov |
|- ( S F T ) = ( F ` <. S , T >. ) |
9 |
7 8
|
eleq2s |
|- ( X e. ( S F T ) -> <. S , T >. e. dom F ) |
10 |
6 9
|
sselid |
|- ( X e. ( S F T ) -> <. S , T >. e. ( A X. B ) ) |
11 |
|
opelxp |
|- ( <. S , T >. e. ( A X. B ) <-> ( S e. A /\ T e. B ) ) |
12 |
10 11
|
sylib |
|- ( X e. ( S F T ) -> ( S e. A /\ T e. B ) ) |