Metamath Proof Explorer


Theorem elmpocl2

Description: If a two-parameter class is not empty, the second argument is in its nominal domain. (Contributed by FL, 15-Oct-2012) (Revised by Stefan O'Rear, 7-Mar-2015)

Ref Expression
Hypothesis elmpocl.f
|- F = ( x e. A , y e. B |-> C )
Assertion elmpocl2
|- ( X e. ( S F T ) -> T e. B )

Proof

Step Hyp Ref Expression
1 elmpocl.f
 |-  F = ( x e. A , y e. B |-> C )
2 1 elmpocl
 |-  ( X e. ( S F T ) -> ( S e. A /\ T e. B ) )
3 2 simprd
 |-  ( X e. ( S F T ) -> T e. B )