Step |
Hyp |
Ref |
Expression |
1 |
|
mptima |
|- ( ( x e. A |-> B ) " D ) = ran ( x e. ( A i^i D ) |-> B ) |
2 |
1
|
a1i |
|- ( C e. V -> ( ( x e. A |-> B ) " D ) = ran ( x e. ( A i^i D ) |-> B ) ) |
3 |
2
|
eleq2d |
|- ( C e. V -> ( C e. ( ( x e. A |-> B ) " D ) <-> C e. ran ( x e. ( A i^i D ) |-> B ) ) ) |
4 |
|
eqid |
|- ( x e. ( A i^i D ) |-> B ) = ( x e. ( A i^i D ) |-> B ) |
5 |
4
|
elrnmpt |
|- ( C e. V -> ( C e. ran ( x e. ( A i^i D ) |-> B ) <-> E. x e. ( A i^i D ) C = B ) ) |
6 |
3 5
|
bitrd |
|- ( C e. V -> ( C e. ( ( x e. A |-> B ) " D ) <-> E. x e. ( A i^i D ) C = B ) ) |