Step |
Hyp |
Ref |
Expression |
1 |
|
elmptrab.f |
|- F = ( x e. D |-> { y e. B | ph } ) |
2 |
|
elmptrab.s1 |
|- ( ( x = X /\ y = Y ) -> ( ph <-> ps ) ) |
3 |
|
elmptrab.s2 |
|- ( x = X -> B = C ) |
4 |
|
elmptrab.ex |
|- ( x e. D -> B e. V ) |
5 |
1
|
mptrcl |
|- ( Y e. ( F ` X ) -> X e. D ) |
6 |
|
simp1 |
|- ( ( X e. D /\ Y e. C /\ ps ) -> X e. D ) |
7 |
|
csbeq1 |
|- ( z = X -> [_ z / x ]_ B = [_ X / x ]_ B ) |
8 |
|
dfsbcq |
|- ( z = X -> ( [. z / x ]. [. w / y ]. ph <-> [. X / x ]. [. w / y ]. ph ) ) |
9 |
7 8
|
rabeqbidv |
|- ( z = X -> { w e. [_ z / x ]_ B | [. z / x ]. [. w / y ]. ph } = { w e. [_ X / x ]_ B | [. X / x ]. [. w / y ]. ph } ) |
10 |
|
nfcv |
|- F/_ z { y e. B | ph } |
11 |
|
nfsbc1v |
|- F/ x [. z / x ]. [. w / y ]. ph |
12 |
|
nfcsb1v |
|- F/_ x [_ z / x ]_ B |
13 |
11 12
|
nfrabw |
|- F/_ x { w e. [_ z / x ]_ B | [. z / x ]. [. w / y ]. ph } |
14 |
|
csbeq1a |
|- ( x = z -> B = [_ z / x ]_ B ) |
15 |
|
sbceq1a |
|- ( x = z -> ( ph <-> [. z / x ]. ph ) ) |
16 |
14 15
|
rabeqbidv |
|- ( x = z -> { y e. B | ph } = { y e. [_ z / x ]_ B | [. z / x ]. ph } ) |
17 |
|
nfcv |
|- F/_ w [_ z / x ]_ B |
18 |
|
nfcv |
|- F/_ y [_ z / x ]_ B |
19 |
|
nfcv |
|- F/_ y z |
20 |
|
nfsbc1v |
|- F/ y [. w / y ]. ph |
21 |
19 20
|
nfsbcw |
|- F/ y [. z / x ]. [. w / y ]. ph |
22 |
|
nfv |
|- F/ w [. z / x ]. ph |
23 |
|
sbccom |
|- ( [. z / x ]. [. w / y ]. ph <-> [. w / y ]. [. z / x ]. ph ) |
24 |
|
sbceq1a |
|- ( y = w -> ( [. z / x ]. ph <-> [. w / y ]. [. z / x ]. ph ) ) |
25 |
24
|
equcoms |
|- ( w = y -> ( [. z / x ]. ph <-> [. w / y ]. [. z / x ]. ph ) ) |
26 |
23 25
|
bitr4id |
|- ( w = y -> ( [. z / x ]. [. w / y ]. ph <-> [. z / x ]. ph ) ) |
27 |
17 18 21 22 26
|
cbvrabw |
|- { w e. [_ z / x ]_ B | [. z / x ]. [. w / y ]. ph } = { y e. [_ z / x ]_ B | [. z / x ]. ph } |
28 |
16 27
|
eqtr4di |
|- ( x = z -> { y e. B | ph } = { w e. [_ z / x ]_ B | [. z / x ]. [. w / y ]. ph } ) |
29 |
10 13 28
|
cbvmpt |
|- ( x e. D |-> { y e. B | ph } ) = ( z e. D |-> { w e. [_ z / x ]_ B | [. z / x ]. [. w / y ]. ph } ) |
30 |
1 29
|
eqtri |
|- F = ( z e. D |-> { w e. [_ z / x ]_ B | [. z / x ]. [. w / y ]. ph } ) |
31 |
|
nfv |
|- F/ x z e. D |
32 |
12
|
nfel1 |
|- F/ x [_ z / x ]_ B e. V |
33 |
31 32
|
nfim |
|- F/ x ( z e. D -> [_ z / x ]_ B e. V ) |
34 |
|
eleq1w |
|- ( x = z -> ( x e. D <-> z e. D ) ) |
35 |
14
|
eleq1d |
|- ( x = z -> ( B e. V <-> [_ z / x ]_ B e. V ) ) |
36 |
34 35
|
imbi12d |
|- ( x = z -> ( ( x e. D -> B e. V ) <-> ( z e. D -> [_ z / x ]_ B e. V ) ) ) |
37 |
33 36 4
|
chvarfv |
|- ( z e. D -> [_ z / x ]_ B e. V ) |
38 |
|
rabexg |
|- ( [_ z / x ]_ B e. V -> { w e. [_ z / x ]_ B | [. z / x ]. [. w / y ]. ph } e. _V ) |
39 |
37 38
|
syl |
|- ( z e. D -> { w e. [_ z / x ]_ B | [. z / x ]. [. w / y ]. ph } e. _V ) |
40 |
9 30 39
|
fvmpt3 |
|- ( X e. D -> ( F ` X ) = { w e. [_ X / x ]_ B | [. X / x ]. [. w / y ]. ph } ) |
41 |
40
|
eleq2d |
|- ( X e. D -> ( Y e. ( F ` X ) <-> Y e. { w e. [_ X / x ]_ B | [. X / x ]. [. w / y ]. ph } ) ) |
42 |
|
dfsbcq |
|- ( w = Y -> ( [. w / y ]. ph <-> [. Y / y ]. ph ) ) |
43 |
42
|
sbcbidv |
|- ( w = Y -> ( [. X / x ]. [. w / y ]. ph <-> [. X / x ]. [. Y / y ]. ph ) ) |
44 |
43
|
elrab |
|- ( Y e. { w e. [_ X / x ]_ B | [. X / x ]. [. w / y ]. ph } <-> ( Y e. [_ X / x ]_ B /\ [. X / x ]. [. Y / y ]. ph ) ) |
45 |
44
|
a1i |
|- ( X e. D -> ( Y e. { w e. [_ X / x ]_ B | [. X / x ]. [. w / y ]. ph } <-> ( Y e. [_ X / x ]_ B /\ [. X / x ]. [. Y / y ]. ph ) ) ) |
46 |
|
nfcvd |
|- ( X e. D -> F/_ x C ) |
47 |
46 3
|
csbiegf |
|- ( X e. D -> [_ X / x ]_ B = C ) |
48 |
47
|
eleq2d |
|- ( X e. D -> ( Y e. [_ X / x ]_ B <-> Y e. C ) ) |
49 |
48
|
anbi1d |
|- ( X e. D -> ( ( Y e. [_ X / x ]_ B /\ [. X / x ]. [. Y / y ]. ph ) <-> ( Y e. C /\ [. X / x ]. [. Y / y ]. ph ) ) ) |
50 |
|
nfv |
|- F/ x ps |
51 |
|
nfv |
|- F/ y ps |
52 |
|
nfv |
|- F/ x Y e. C |
53 |
50 51 52 2
|
sbc2iegf |
|- ( ( X e. D /\ Y e. C ) -> ( [. X / x ]. [. Y / y ]. ph <-> ps ) ) |
54 |
53
|
pm5.32da |
|- ( X e. D -> ( ( Y e. C /\ [. X / x ]. [. Y / y ]. ph ) <-> ( Y e. C /\ ps ) ) ) |
55 |
45 49 54
|
3bitrd |
|- ( X e. D -> ( Y e. { w e. [_ X / x ]_ B | [. X / x ]. [. w / y ]. ph } <-> ( Y e. C /\ ps ) ) ) |
56 |
|
3anass |
|- ( ( X e. D /\ Y e. C /\ ps ) <-> ( X e. D /\ ( Y e. C /\ ps ) ) ) |
57 |
56
|
baibr |
|- ( X e. D -> ( ( Y e. C /\ ps ) <-> ( X e. D /\ Y e. C /\ ps ) ) ) |
58 |
41 55 57
|
3bitrd |
|- ( X e. D -> ( Y e. ( F ` X ) <-> ( X e. D /\ Y e. C /\ ps ) ) ) |
59 |
5 6 58
|
pm5.21nii |
|- ( Y e. ( F ` X ) <-> ( X e. D /\ Y e. C /\ ps ) ) |