Description: The elements of a set difference and the minuend are not equal. (Contributed by AV, 21-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elneeldif | |- ( ( X e. A /\ Y e. ( B \ A ) ) -> X =/= Y ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eldif | |- ( Y e. ( B \ A ) <-> ( Y e. B /\ -. Y e. A ) ) | |
| 2 | nelne2 | |- ( ( X e. A /\ -. Y e. A ) -> X =/= Y ) | |
| 3 | 2 | ex | |- ( X e. A -> ( -. Y e. A -> X =/= Y ) ) | 
| 4 | 3 | adantld | |- ( X e. A -> ( ( Y e. B /\ -. Y e. A ) -> X =/= Y ) ) | 
| 5 | 1 4 | biimtrid | |- ( X e. A -> ( Y e. ( B \ A ) -> X =/= Y ) ) | 
| 6 | 5 | imp | |- ( ( X e. A /\ Y e. ( B \ A ) ) -> X =/= Y ) |