Metamath Proof Explorer


Theorem elneeldif

Description: The elements of a set difference and the minuend are not equal. (Contributed by AV, 21-Oct-2023)

Ref Expression
Assertion elneeldif
|- ( ( X e. A /\ Y e. ( B \ A ) ) -> X =/= Y )

Proof

Step Hyp Ref Expression
1 eldif
 |-  ( Y e. ( B \ A ) <-> ( Y e. B /\ -. Y e. A ) )
2 nelne2
 |-  ( ( X e. A /\ -. Y e. A ) -> X =/= Y )
3 2 ex
 |-  ( X e. A -> ( -. Y e. A -> X =/= Y ) )
4 3 adantld
 |-  ( X e. A -> ( ( Y e. B /\ -. Y e. A ) -> X =/= Y ) )
5 1 4 syl5bi
 |-  ( X e. A -> ( Y e. ( B \ A ) -> X =/= Y ) )
6 5 imp
 |-  ( ( X e. A /\ Y e. ( B \ A ) ) -> X =/= Y )