Description: The elements of a set difference and the minuend are not equal. (Contributed by AV, 21-Oct-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | elneeldif | |- ( ( X e. A /\ Y e. ( B \ A ) ) -> X =/= Y ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif | |- ( Y e. ( B \ A ) <-> ( Y e. B /\ -. Y e. A ) ) |
|
2 | nelne2 | |- ( ( X e. A /\ -. Y e. A ) -> X =/= Y ) |
|
3 | 2 | ex | |- ( X e. A -> ( -. Y e. A -> X =/= Y ) ) |
4 | 3 | adantld | |- ( X e. A -> ( ( Y e. B /\ -. Y e. A ) -> X =/= Y ) ) |
5 | 1 4 | syl5bi | |- ( X e. A -> ( Y e. ( B \ A ) -> X =/= Y ) ) |
6 | 5 | imp | |- ( ( X e. A /\ Y e. ( B \ A ) ) -> X =/= Y ) |