Metamath Proof Explorer


Theorem elnei

Description: A point belongs to any of its neighborhoods. Property V_iii of BourbakiTop1 p. I.3. (Contributed by FL, 28-Sep-2006)

Ref Expression
Assertion elnei
|- ( ( J e. Top /\ P e. A /\ N e. ( ( nei ` J ) ` { P } ) ) -> P e. N )

Proof

Step Hyp Ref Expression
1 ssnei
 |-  ( ( J e. Top /\ N e. ( ( nei ` J ) ` { P } ) ) -> { P } C_ N )
2 1 3adant2
 |-  ( ( J e. Top /\ P e. A /\ N e. ( ( nei ` J ) ` { P } ) ) -> { P } C_ N )
3 snssg
 |-  ( P e. A -> ( P e. N <-> { P } C_ N ) )
4 3 3ad2ant2
 |-  ( ( J e. Top /\ P e. A /\ N e. ( ( nei ` J ) ` { P } ) ) -> ( P e. N <-> { P } C_ N ) )
5 2 4 mpbird
 |-  ( ( J e. Top /\ P e. A /\ N e. ( ( nei ` J ) ` { P } ) ) -> P e. N )