Description: A class cannot be an element of one of its elements. (Contributed by AV, 14-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elnel | |- ( A e. B -> B e/ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnotel | |- ( A e. B -> -. B e. A ) |
|
| 2 | df-nel | |- ( B e/ A <-> -. B e. A ) |
|
| 3 | 1 2 | sylibr | |- ( A e. B -> B e/ A ) |