Description: The set of elements s determining classes C (which may depend on s ) containing a special element and the set of elements s determining classes C not containing the special element are disjoint. (Contributed by Alexander van der Vekens, 11-Jan-2018) (Revised by AV, 9-Nov-2020) (Revised by AV, 17-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elneldisj.e | |- E = { s e. A | B e. C } |
|
elneldisj.n | |- N = { s e. A | B e/ C } |
||
Assertion | elneldisj | |- ( E i^i N ) = (/) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elneldisj.e | |- E = { s e. A | B e. C } |
|
2 | elneldisj.n | |- N = { s e. A | B e/ C } |
|
3 | df-nel | |- ( B e/ C <-> -. B e. C ) |
|
4 | 3 | rabbii | |- { s e. A | B e/ C } = { s e. A | -. B e. C } |
5 | 2 4 | eqtri | |- N = { s e. A | -. B e. C } |
6 | 1 5 | ineq12i | |- ( E i^i N ) = ( { s e. A | B e. C } i^i { s e. A | -. B e. C } ) |
7 | rabnc | |- ( { s e. A | B e. C } i^i { s e. A | -. B e. C } ) = (/) |
|
8 | 6 7 | eqtri | |- ( E i^i N ) = (/) |