Description: Two classes are different if they don't contain the same element. (Contributed by AV, 28-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elnelne1 | |- ( ( A e. B /\ A e/ C ) -> B =/= C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel | |- ( A e/ C <-> -. A e. C ) |
|
| 2 | nelne1 | |- ( ( A e. B /\ -. A e. C ) -> B =/= C ) |
|
| 3 | 1 2 | sylan2b | |- ( ( A e. B /\ A e/ C ) -> B =/= C ) |