Description: Two classes are different if they don't belong to the same class. (Contributed by AV, 28-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elnelne2 | |- ( ( A e. C /\ B e/ C ) -> A =/= B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel | |- ( B e/ C <-> -. B e. C ) |
|
| 2 | nelne2 | |- ( ( A e. C /\ -. B e. C ) -> A =/= B ) |
|
| 3 | 1 2 | sylan2b | |- ( ( A e. C /\ B e/ C ) -> A =/= B ) |