Metamath Proof Explorer


Theorem elnelun

Description: The union of the set of elements s determining classes C (which may depend on s ) containing a special element and the set of elements s determining classes C not containing the special element yields the original set. (Contributed by Alexander van der Vekens, 11-Jan-2018) (Revised by AV, 9-Nov-2020) (Revised by AV, 17-Dec-2021)

Ref Expression
Hypotheses elneldisj.e
|- E = { s e. A | B e. C }
elneldisj.n
|- N = { s e. A | B e/ C }
Assertion elnelun
|- ( E u. N ) = A

Proof

Step Hyp Ref Expression
1 elneldisj.e
 |-  E = { s e. A | B e. C }
2 elneldisj.n
 |-  N = { s e. A | B e/ C }
3 df-nel
 |-  ( B e/ C <-> -. B e. C )
4 3 rabbii
 |-  { s e. A | B e/ C } = { s e. A | -. B e. C }
5 2 4 eqtri
 |-  N = { s e. A | -. B e. C }
6 1 5 uneq12i
 |-  ( E u. N ) = ( { s e. A | B e. C } u. { s e. A | -. B e. C } )
7 rabxm
 |-  A = ( { s e. A | B e. C } u. { s e. A | -. B e. C } )
8 6 7 eqtr4i
 |-  ( E u. N ) = A