Metamath Proof Explorer


Theorem elni

Description: Membership in the class of positive integers. (Contributed by NM, 15-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion elni
|- ( A e. N. <-> ( A e. _om /\ A =/= (/) ) )

Proof

Step Hyp Ref Expression
1 df-ni
 |-  N. = ( _om \ { (/) } )
2 1 eleq2i
 |-  ( A e. N. <-> A e. ( _om \ { (/) } ) )
3 eldifsn
 |-  ( A e. ( _om \ { (/) } ) <-> ( A e. _om /\ A =/= (/) ) )
4 2 3 bitri
 |-  ( A e. N. <-> ( A e. _om /\ A =/= (/) ) )