Metamath Proof Explorer


Theorem elnlfn2

Description: Membership in the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006) (Revised by Mario Carneiro, 17-Nov-2013) (New usage is discouraged.)

Ref Expression
Assertion elnlfn2
|- ( ( T : ~H --> CC /\ A e. ( null ` T ) ) -> ( T ` A ) = 0 )

Proof

Step Hyp Ref Expression
1 elnlfn
 |-  ( T : ~H --> CC -> ( A e. ( null ` T ) <-> ( A e. ~H /\ ( T ` A ) = 0 ) ) )
2 1 simplbda
 |-  ( ( T : ~H --> CC /\ A e. ( null ` T ) ) -> ( T ` A ) = 0 )