Metamath Proof Explorer


Theorem elnn

Description: A member of a natural number is a natural number. (Contributed by NM, 21-Jun-1998)

Ref Expression
Assertion elnn
|- ( ( A e. B /\ B e. _om ) -> A e. _om )

Proof

Step Hyp Ref Expression
1 trom
 |-  Tr _om
2 trel
 |-  ( Tr _om -> ( ( A e. B /\ B e. _om ) -> A e. _om ) )
3 1 2 ax-mp
 |-  ( ( A e. B /\ B e. _om ) -> A e. _om )