Description: A member of a natural number is a natural number. (Contributed by NM, 21-Jun-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | elnn | |- ( ( A e. B /\ B e. _om ) -> A e. _om ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trom | |- Tr _om |
|
2 | trel | |- ( Tr _om -> ( ( A e. B /\ B e. _om ) -> A e. _om ) ) |
|
3 | 1 2 | ax-mp | |- ( ( A e. B /\ B e. _om ) -> A e. _om ) |