Description: A member of a natural number is a natural number. (Contributed by NM, 21-Jun-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elnn | |- ( ( A e. B /\ B e. _om ) -> A e. _om ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | trom | |- Tr _om | |
| 2 | trel | |- ( Tr _om -> ( ( A e. B /\ B e. _om ) -> A e. _om ) ) | |
| 3 | 1 2 | ax-mp | |- ( ( A e. B /\ B e. _om ) -> A e. _om ) |