Description: Nonnegative integers expressed in terms of naturals and zero. (Contributed by Raph Levien, 10-Dec-2002)
Ref | Expression | ||
---|---|---|---|
Assertion | elnn0 | |- ( A e. NN0 <-> ( A e. NN \/ A = 0 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-n0 | |- NN0 = ( NN u. { 0 } ) |
|
2 | 1 | eleq2i | |- ( A e. NN0 <-> A e. ( NN u. { 0 } ) ) |
3 | elun | |- ( A e. ( NN u. { 0 } ) <-> ( A e. NN \/ A e. { 0 } ) ) |
|
4 | c0ex | |- 0 e. _V |
|
5 | 4 | elsn2 | |- ( A e. { 0 } <-> A = 0 ) |
6 | 5 | orbi2i | |- ( ( A e. NN \/ A e. { 0 } ) <-> ( A e. NN \/ A = 0 ) ) |
7 | 2 3 6 | 3bitri | |- ( A e. NN0 <-> ( A e. NN \/ A = 0 ) ) |