Metamath Proof Explorer


Theorem elnn0

Description: Nonnegative integers expressed in terms of naturals and zero. (Contributed by Raph Levien, 10-Dec-2002)

Ref Expression
Assertion elnn0
|- ( A e. NN0 <-> ( A e. NN \/ A = 0 ) )

Proof

Step Hyp Ref Expression
1 df-n0
 |-  NN0 = ( NN u. { 0 } )
2 1 eleq2i
 |-  ( A e. NN0 <-> A e. ( NN u. { 0 } ) )
3 elun
 |-  ( A e. ( NN u. { 0 } ) <-> ( A e. NN \/ A e. { 0 } ) )
4 c0ex
 |-  0 e. _V
5 4 elsn2
 |-  ( A e. { 0 } <-> A = 0 )
6 5 orbi2i
 |-  ( ( A e. NN \/ A e. { 0 } ) <-> ( A e. NN \/ A = 0 ) )
7 2 3 6 3bitri
 |-  ( A e. NN0 <-> ( A e. NN \/ A = 0 ) )